

Current Transducer LT 505-S/SP24

For the electronic measurement of currents: DC, AC, pulsed..., with a galvanic isolation between the primary circuit (high power) and the secondary circuit (electronic circuit).

E	ecti	rical	data	

I _{PN}	Primary nominal current rms		500			А	
I _{PM}	Primary current, measuring range		0 ± 1000			Α	
R _M	Measuring resistance @		$T_{A} = 70^{\circ}C T_{A} = 85^{\circ}C$				
ivi				n R M max		n R _{M max}	
	with ± 15 V	@ ± 500 A _{max}	0	60	0	58	Ω
		@ ± 1000 A max	0	17	0	15	Ω
I _{SN}	Secondary nominal current rms		143			mΑ	
K _N	Conversion ratio		1 : 3500				
V _c	Supply voltage (± 5 %)		± 15			V	
I _c	Current consumption		30 + I _s		mA		
•C				00	S		

Accuracy - Dynamic performance data

X _G ε _L I _O I _{OT} t _r di/dt BW	Overall accuracy (a) I_{PN} , $T_A = 25^{\circ}C$ Linearity error Offset current (a) $I_P = 0$, $T_A = 25^{\circ}C$ Temperature variation of I_O Response time ¹) to 90 % of I_{PN} ste di/dt accurately followed Frequency bandwidth (- 1 dB)	; - 25°C + 85°C	± 0.6 < 0.1 Typ ± 0.3 < 1 > 50 DC	Max ± 0.6 ± 0.8	% % mA mA µs A/µs kHz
T _A T _s R _s	Ambient operating temperature Ambient storage temperature Secondary coil resistance @ Mass Standards	T _A = 70°C T _A = 85°C	- 25 - 40 25 27 850 EN 50		ໍຕ ໍຕ Ω g 95

<u>Note</u>: ¹⁾ With a di/dt of 100 A/ μ s.

$I_{PN} = 500 \text{ A}$

Features

- Closed loop (compensated) current transducer using the Hall effect
- Isolated plastic case recognized according to UL 94-V0.

Special features

- I_{PM} = 0 .. ± 1000 A
- $\mathbf{K}_{N} = 1:3500$
- $V_c = \pm 15 (\pm 5 \%) V$
- T_A = 25°C ..+ 85°C
- Connection to secondary circuit on LEMO EGJ.0B.303.CLA
- Potted
- Between primary and secondary shield linked to external shield
- Customer marking.

Advantages

- Excellent accuracy
- Very good linearity
- Low temperature drift
- Optimized response time
- Wide frequency bandwidth
- No insertion losses
- High immunity to external interference
- Current overload capability.

Applications

- Single or three phases inverter
- Propulsion and braking chopper
- Propulsion converter
- Auxiliary converter
- Battery charger.

Application Domain

• Traction.

Page 1/3

Current Transducer LT 505-S/SP24

Isolation characteristics					
\mathbf{V}_{d}	Rms voltage for AC isolation test, 50 Hz, 1 min	6 ²⁾ 1 ³⁾	kV kV		
dCp dCl CTI	Creepage distance Clearance distance Comparative Tracking Index (group III)	37.9 32.9 225	mm mm		

Notes: 2) Between primary and secondary + shields

³⁾ Between secondary and internal shield + external shield The internal shield is connected to external shield.

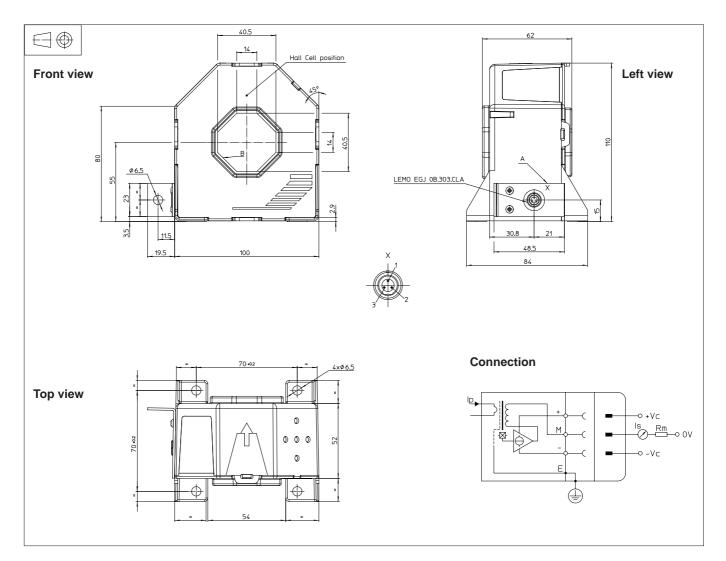
Safety

This transducer must be used in electric/electronic equipment with respect to applicable standards and safety requirements in accordance with the manufacturer's operating instructions.

Caution, risk of electrical shock

When operating the transducer, certain parts of the module can carry hazardous voltage (eg. primary busbar, power supply).

Ignoring this warning can lead to injury and/or cause serious damage.


This transducer is a built-in device, whose conducting parts must be inaccessible after installation.

A protective housing or additional shield could be used. Main supply must be able to be disconnected.

Page 2/3

Dimensions LT 505-S/SP24 (in mm. 1 mm = 0.0394 inch)

Mechanical characteristics

- General tolerance
- Transducer fastening

Recommended fastening torque 4.20 Nm or 3.10 Lb.-Ft. Primary through-hole or

- · Connection of secondary
- Connection internal and external shields

± 0.5 mm

4 holes Ø 6.5 mm

4 steel screws M6 40.5 x 14 mm 36 mm max. LEMO EGJ 0B.303.CLA

holes Ø 6.5 mm

Remarks

- I_s is positive when IP flows in the direction of the arrow.
- Temperature of the primary conductor should not exceed 100°C.
- · Dynamic performances (di/dt and response time) are best with a single bar completely filling the primary hole.

Page 3/3